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Abstract— We introduce Neural Dynamical Systems (NDS),
a method of learning dynamical models in various gray-box
settings which incorporates prior knowledge in the form of
systems of ordinary differential equations. NDS uses neural
networks to estimate free parameters of the system, predicts
residual terms, and numerically integrates over time to predict
future states. A key insight is that many real dynamical systems
of interest are hard to model because the dynamics may vary
across rollouts. We mitigate this problem by taking a trajectory
of prior states as the input to NDS and train it to dynamically
estimate system parameters using the preceding trajectory.
We find that NDS learns dynamics with higher accuracy and
fewer samples than a variety of deep learning methods that
do not incorporate the prior knowledge and methods from
the system identification literature which do. We demonstrate
these advantages first on synthetic dynamical systems and then
on real data captured from deuterium shots from a nuclear
fusion reactor. Finally, we demonstrate that these benefits can
be utilized for control in small-scale experiments.

I. INTRODUCTION
The use of function approximators for dynamical system

modeling has become increasingly common. This has proven
quite effective when a substantial amount of real data is
available relative to the complexity of the model being
learned [11, 21, 9]. These learned models are used for
downstream applications such as model-based reinforcement
learning [31, 35] or model-predictive control (MPC) [41].

Model-based control techniques are exciting as we may
be able to solve new classes of problems with improved
controllers. Problems like dextrous robotic manipulation
[30], game-playing [38], and nuclear fusion are increasingly
being approached using model-based reinforcement learning
techniques. However, learning a dynamics model using, for
example, a deep neural network can require large amounts
of data. This is especially problematic when trying to op-
timize real physical systems, where data collection can be
expensive. As an alternative to data-hungry machine learning
methods, there is also a long history of fitting models to a
system using techniques from system identification, some
of which include prior knowledge about the system drawn
from human understanding [32, 23, 39]. These models,
especially in the gray-box setting, are typically data-efficient
and often contain interpretable model parameters. However,
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they are not well suited for the situation where the given prior
knowledge is approximate or incomplete in nature. They also
do not generally adapt to the situation where trajectories are
drawn from a variety of parameter settings at test time. This
is an especially crucial point as many systems of interest
exhibit path-dependent dynamics, which we aim to recover
on the fly.

In total, system identification methods are sample efficient
but inflexible given changing parameter settings and incom-
plete or approximate knowledge. Conversely, deep learning
methods are more flexible at the cost of many more samples.
In this paper, we aim to solve both of these problems
by biasing the model class towards our physical model of
dynamics. Physical models of dynamics are often given in the
form of systems of ordinary differential equations (ODEs),
which are ubiquitious and may have free parameters that
specialize them to a given physical system. We develop
a model that uses neural networks to predict the free pa-
rameters of an ODE system from the previous timesteps
as well as residual terms added to each component of the
system. To train this model, we integrate over the ODE
and backpropagate gradients from the prediction error. This
particular combination of prior knowledge and deep learning
components is effective in quickly learning the dynamics
and allows us to adjust system behavior in response to a
wide variety of dynamic parameter settings. Even when the
dynamical system is partially understood and only a subset
of the ODEs are known, we find that our method still enjoys
these benefits. We apply our algorithm to learning models in
three synthetic settings: a generic model of ballistics, the
Lorenz system [24], and a generalized cartpole problem,
which we use for control as well. We also learn a high-
level model of plasma dynamics for a fusion tokamak from
real data.

The contributions of this paper are
• We introduce Neural Dynamical Systems (NDS), a

new class of model for learning dynamics that can
incorporate prior knowledge about the system.

• We show that these models naturally handle the issue
of partial or approximate prior knowledge, irregularly
spaced data, and system dynamics that change across in-
stantiations, which generalizes the typical system iden-
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tification setting. We also show that these advantages
extend to control settings.

• We demonstrate this model’s effectiveness on a real
dynamics problem relevant to nuclear fusion and on
synthetic problems where we can compare against a
ground truth model.

II. RELATED WORK
There is a long tradition of forecasting physical dynamics

with machine learning. [13] lays out ideas from classical
statistics for predicting spatiotemporal data. In the deep
learning world, recurrent neural networks and long short-
term memory networks have been used for a long time to
address sequential problems [20]. However, these models
struggle with continuous-time data and do not allow for the
introduction of physical priors. Recently, there has been work
in learning provably stable dynamics models by constraining
the neural network to have a stable and jointly learned
Lyapunov function [25]. We see opportunities to use these
techniques in follow up work.

a) Neural Ordinary Differential Equations: As most
numerical ODE solvers are algorithms involving differen-
tiable operations, it has always been possible in principle to
backpropagate through the steps of these solvers dating back
to at least [37]. However, since each step of the solver in-
volves calling the derivative function, naı̈ve backpropagation
incurs an O(n) memory cost in the number of ODE solution
steps, where n is the number of derivative calls made by the
solver. [8] demonstrated that by computing gradients through
the adjoint sensitivity method, the memory complexity of
backpropagating through a family of ODE solvers can be
reduced to O(1) for a fixed network, as opposed to the naive
O(n). However, this work only used generic neural networks
as the derivative function and did not consider dynamics.
They also provide a PyTorch package which we have built
off of in our work.

There has been some work using neural ordinary differen-
tial equations to solve physical problems. [33] used a fully-
connected neural ODE with an RNN encoder and decoder to
model Navier-Stokes problems. [36] used a neural network
integrated with a Runge-Kutta method for noise reduction
and irregularly sampled data. There has also been work
learning the structure of dynamical systems, first with a
convolutional-deconvolutional warping scheme inspired by
the solutions to advection-diffusion PDEs [2], then with a
Neural ODE which was forced to respect boundary condi-
tions and a partial observation mechanism [1]. There was
also work on constraining a neural network model to respect
separable conservative Hamiltonian dynamics, but like all
of the aforementioned methods, this does not incorporate
information about the dynamics of a particular system [10].
In general, none of these methods incorporate prior know-
eledge as explicitly as including appropriate equations in
the statistical model. Furthermore, many of these methods
focus on a specific problem, whereas we give a way to apply
specific knowledge about a variety of problems.

An interesting approach that builds on a previous version
of this paper [26] is developed in [18], where it is shown that

iteratively solving a Lagrangian formulation of the problem
for a fixed set of parameters and varying Lagrange multiplier
results in predictions which maximally use the physical
model. Our problem setting is a generalization of theirs in
that we allow the parameters to vary among rollouts and
predict them on the fly.

A further generalization is [34], which treats the whole
problem of differential equations with missing components
as a framework for modeling a very wide range of settings.
We give a more prescriptive architecture for our class of
problems and extend the analysis to a setting with real data
as well as showing an application of our model for control.

b) Machine Learning for Nuclear Fusion:: As far back
as 1995, [28] showed that by approximating the differential
operator with a (single-layer, in their case) neural network,
one could fit simple cases of the Grad-Shafranov equation for
magnetohydrodynamic equilibria. Recently, work has shown
that plasma dynamics are amenable to neural network pre-
diction. In particular, [22] used a convolutional and LSTM-
based architecture to predict possible plasma disruptions
(when a plasma instability grows large and causes a loss
of plasma containment and pressure).

There has also been work in the field of plasma control:
a neural network model of the neutral beam injection for
the DIII-D tokamak has been deployed in order to diagnose
the effect of controls on shots conducted at the reactor
[3]. Additionally, [4] used classic control techniques and a
simpler model of the dynamics to develop a controller that
allows characteristics of the tokamak plasma to be held at
desired levels. III. PROBLEM SETTING

Typically, a dynamical system ẋ = f�(x, u, t) with
some parameters � is the conventional model for system
identification problems. Here, state is x 2 X , control is
u 2 U , and time is t 2 R. The objective is to predict future
states given past states, past and future controls, and prior
knowledge of the form of f . We denote x(�, t,u, x0) =
x0+

R t
0 f�(x, u, t)dt as the state obtained by integrating our

dynamical system around f to time t.
We consider in this work a more general setting and

address the problem of prediction and control over a class
of dynamical systems, which we define as the set {ẋ =
f�(x, u, t) | � 2 �} , where � is the space of parameters
for the dynamical system (e.g. spring constant or terminal
velocity). We can generate a trajectory from a class by
sampling a � ⇠ P (�) for some distribution P and choosing
initial conditions and controls. In real data, we can view
nature as choosing, but not disclosing, �. For a particular
example j, we sample � ⇠ P (�) and x0 ⇠ P (X0)
and are given controls u indexed as u(t) and input data
{x(�, ti,u, x0)}Ti=0 during training. At test time, we give
a shorter, prefix time series {x(�, ti,u, x0)}T

0

i=0 but assume
access to future controls. Then the prediction objective for a
class of systems for N examples for timesteps {ti}TT 0+1 is

x̂ = argmin
x̂

E
x0⇠P (X0)

�⇠P (�)

"
TX

i=T 0+1

||x(�, ti,u, x0)� x̂ti ||
2
2

#
.
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This objective differs from the traditional one in that
implicitly, identifying � for each trajectory needs to be done
from the problem data in order to be able to predict the data
generated by f�.

Similarly, the control problem is

u = min
u

E�⇠P (�),x0⇠P (X0)

Z t

0
c(u(t), x(t))dt

�
,

s.t. x(t) = x0 +

Z t

0
f�(x, u, t) dt

for some cost functional c. We will primarily explore the
prediction problem in this setting, but as secondary consid-
erations, we explore robustness to noise, the ability to handle
irregularly spaced input data, and the ability to recover the
parameters � which generated the original trajectories. We
will also consider the control problem in a simple setting.

IV. METHODS
We build up the description of our proposed method by

first describing the two methods that inspire it: gray box
system identification through optimization [23], and using
a Neural ODE [8] to predict future states in a dynamical
system.

To apply grey box optimization [23] to a dynamical system
ẋ = f�(x, u, t) for problem data {xti}T

0

t=0, we would use
nonlinear least squares [12] to find

�̂ = argmin
�̂

X

i

����

����
Z ti

0
f�(x, u(t), t) dt�

Z ti

0
f�̂(x, u(t), t)dt

����

���� .
(1)

This makes good use of the prior knowledge component
of our system but is prone to compounding errors through
integration and does not leverage data that may have come
from alternate system parameters.

A data driven approach would be to minimize the same
objective with a fully connected neural ODE [8] h✓ in place
of f . However, we find that this procedure requires large
amounts of training data and doesn’t leverage any prior
knowledge we might have, though it is flexible to classes
of dynamical systems.

We define a Neural Dynamical System by taking the
advantages of both these methods in the setting where we
know the full and correct ODEs and then show how to
generalize it to situations where only some ODEs are known
or they are approximate. Specifically, a Neural Dynamical
System (NDS) is a class of dynamical systems where a neural
network predicts some part of f�(x, u, t), usually parameters
� or a term which is added to f .

a) NDS with Full System Dynamics: Consider a class
of dynamical systems as defined in Section III where x 2 Rn,
u 2 Rm, � 2 Rdp , dh, dc 2 N and let ✓, #, ⌧ be trainable
neural network weights. Let h✓(xt1:T 0 , ut1:T ) be a neural
net mapping state history and control sequence to the dp

parameters of the system �̂ and an embedding bh 2 Rdh .
Also let c#(xt, ut) be a similar network taking a single state
and control that outputs an embedding bc 2 Rdc . Finally,

let d⌧ (bh, bc) be a network which takes the two output
embeddings from the previous network and outputs residual
terms r̂. Intuitively, we would like to use the observed history
to estimate our system parameters, and some combination
of the observed history and current observation to estimate
residuals, which influences the design of our model, the
neural dynamical system (a visualization of which is shown
in Figure 1), written

ẋ = g�̂(xt, ut, t)
| {z }
Prior knowledge

+r̂ �̂, bh = h✓(xt1:T 0 , ut1:T )| {z }
History encoder

bc = c#(xt, ut)| {z }
Context encoder

r̂ = d⌧ (bh, bc)| {z }
Residual prediction

(2)

where g are domain-specific ODEs which are the input
‘domain knowledge’ about the system being modeled. Note
that if the prior knowledge g is identically zero, this method
reduces to the Neural ODE predictions we discussed at the
beginning of this section. We also study an ablated model,
NDS0, which lacks the residual component r̂ and context
encoder network d⌧ . We note here that the context encoder
is intended to potentially correct for model misspecification
and noise but in the noiseless case with a model which is
perfect, it may not be necessary. We explore this throughout
Section V.

Example 1: Lorenz system. To illustrate the full construc-
tion, we operate on the example of the the Lorenz system:
a chaotic dynamical system originally defined to model
atmospheric processes [24]. The system has 3-dimensional
state (which we’ll denote by x, y, z), 3 parameters, ⇢, �, and
�, and no control input. The system is given by

ẋ = �(y � x) ẏ = x(⇢� z)� y ż = xy � �z. (3)

For a given instantiation of the Lorenz system, we have
values of � = [�,�, ⇢] that are constant across the trajectory.
So, we can instantiate h✓ which outputs �̂ = [�̂, �̂, ⇢̂]. We
use the DOPRI5 method [14] to integrate the full neural
dynamical system in Equation 2, with g given by the system
in Equation 3 using the adjoint method of [8]. We use the
state xT 0 as the initial condition for this integration. This
gives a sequence {x̂t}Tt=T 0 , which we evaluate and supervise
with a loss of the form

L✓,#,⌧ ({x̂ti}Ti=T 0+1, {xti}Tt=T 0+1) =
TX

t=T 0+1

||xti � x̂ti ||22.

(4)
Because of the way we generate our input data, this is
equivalent to Equation III. We assume in our setting with
full dynamics that the true dynamics lie in the function class
established in Equation 2. By the method in [8] we can
backpropagate gradients through this loss into the parameters
of our NDS. Then algorithms in the SGD family will
converge to a local minimum of our loss function.

b) NDS with Partial System Dynamics: Suppose we
only had prior knowledge about some of the components of
our system and none about others. We can easily accomodate
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x1

⁞
xT′

u1

⁞
uT′

ODE 
Solver

xT′

⁞
xT

+System 
Parameter 
Estimation

xt   ut

Prior Knowledge ODEs

g(x) = 

Residual Prediction

Fig. 1. An example Neural Dynamical System. Here, blue boxes are fully connected neural networks, gray boxes are problem data and output, the
green box is the prior knowledge dynamical system, the purple box is data output by ODE solver to query derivatives, and the black box is an ODE solver.
The ODEs and system parameters are problem dependent, but here we consider the Lorenz system (defined in Example 1) as an example. Our notation
for x is unfortunately overloaded by our method and the Lorenz system—the x from our method is bolded in the figure.

this incomplete information by simply ‘zeroing out’ the
function. This looks like

g�(x, u, t) =

"(
g
(i)
� (x, u, t) if g(i)� is known,
0 else.

#
(5)

substituted into equation 2. In this setup, the residual term es-
sentially makes the unknown dimensions unstructured Neural
ODEs, which still can model time series well [33].

c) NDS with Approximate System Dynamics: For Neu-
ral Dynamical Systems to be useful, they must handle
situations where the known model is approximate. This is
transparently handled by our formulation of Neural Dynam-
ical Systems: the parameters of the approximate model �̂

are predicted by h✓(x1:T 0 , u1:T 0) and the residuals r̂ are
predicted by d⌧ (bh, bc). This is the same as in the case where
we have the correct dynamics, but we remove the assumption
of a perfect model.

Example 2: Nuclear Fusion System. In this paper, we
apply this technique to plasma dynamics in a tokamak. In a
tokamak, two quantities of interest are the stored energy of
the plasma, which we denote E and its rotational frequency,
!. The neutral beams and microwave heating allow us to add
power (P ) and torque (T ) to the plasma. The plasma also dis-
sipates energy and rotational momentum via transport across
the boundary of the plasma, radiative cooling, and other
mechanisms. While the detailed evolution of these quantities
is described by turbulent transport equations, for the purposes
of control and design studies, physicists often use reduced,
volume-averaged models. The simple linear model (up to
variable parameters) used for control development in [4] is
used in this work.

Ė = P � E

⌧e
!̇ =

T

nimiR0
� !

⌧m
(6)

Here, ni is ion density, mi is ion mass, and R0 is the
tokamak major radius. We use the constant known values
for these. ⌧e and ⌧m are the confinement times of the plasma
energy and angular momentum, which we treat as variable
parameters (because they are!). These are predicted by the
neural network in our model. We again use the model in
Equation 2 to give us a neural dynamical system which can

learn the real dynamics starting from this approximation in
Section V-C.

V. EXPERIMENTS

In the following experiments, we aim to show that our
methods improve predictions of physical systems by includ-
ing prior dynamical knowledge. These improvements hold
even as we vary the configurations between structured and
fluid settings. We show that our models learn from less data
and are more accurate, that they handle irregularly spaced
data well, and that they learn the appropriate parameters of
the prior knowledge systems even when they only ever see
trajectories.

We use L2 error as our evaluation measure for predictive
accuracy as given by Equation 4, though in cases where the
absolute errors aren’t very interpretable, we normalize for
ease of comparison. We also evaluate our model’s ability to
predict the system parameters by computing the L2 error, i.e.Pn

i=1 ||�̂i � �i||22. For synthetic examples, we consider the
Lorenz system in (3) and a simple Ballistic system modeling
projectile motion under a variety of drag conditions. We
learn over trajectories {(xti , uti , ti)}Ti=1 where the xti are
generated by numerically integrating ẋ�(x, u, t) using scipy’s
odeint function [40], with x0 and � uniformly sampled from
X and �, and uti given. Note that � remains fixed throughout
a single trajectory. Details on the ranges of initial conditions
and parameters sampled are in the appendix. We evaluate the
synthetic experiments on a test set of 20,000 trajectories that
is fixed for a particular random seed generated in the same
way as the training data. We use a timestep of 0.5 seconds
for the synthetic trajectories. On the Ballistic system this
allows us to see trajectories that do not reach their peak and
those that start to fall. Since the Lyapunov exponent of the
Lorenz system is less than 3, in 16 predicted timesteps we get
both predictable and unpredictable data [16]). We believe it
is important to look at the progress of the system across this
threshold to understand whether the NDS model is robust
to chaotic dynamics — since the Lorenz system used for
structure is itself chaotic, we want to make sure that the
system does not blow up over longer timescales.
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We note that ReLU activations were chosen for all feedfor-
ward and recurrent architectures, while in the Neural-ODE-
based architectures, we follow the recommendations of [8]
and use the Softplus. The sizes and depths of the baselines
were chosen after moderate hyperparameter search.

We can view the Partial NDS and NODE as ablations of
the Full NDS model which remove some and all of the prior
knowledge, respectively. Each model takes 32 timesteps of
state and control information as input and are trained on
predictions for the following 16 timesteps. The ODE-based
models are integrated from the initial conditions of the last
given state. All neural networks are all trained with a learning
rate of 3⇥10�3, which was seen to work well across models.
We generated a training set of 100,000 trajectories, test set of
20,000 trajectories, and validation set of 10,000 trajectories.
Training was halted if validation error did not improve for 3
consecutive epochs.

A. Comparison Methods

We compare our models with other choices along the
spectrum of structured to flexible models from both ma-
chine learning and system identification. In our paper, we
compared the following methods in our experiments:

• Full NDS: A Neural Dynamical System with the full
system dynamics for the problem being analyzed. The
full construction of this model is given by Equation
2. For the functions h✓, c#, d⌧ , we use fully connected
networks with 2 layers, Softplus activations, 64 hidden
nodes in each layer, and batch normalization.

• Partial NDS: A Neural Dynamical System with partial
system dynamics for the problem being analyzed. These
follow Equation 5 as applied to Equation 2. For the
Ballistic system, we only provide equations for ẋ and
ẍ, excluding the information about vertical motion from
our network. For the Lorenz system, we only provide
equations for ẋ and ẏ, excluding information about
motion in the z direction. For the Cartpole system, we
only provide information about ✓̇ and ✓̈. These equations
were chosen somewhat arbitrarily to illustrate the partial
NDS effectiveness. We use similar neural networks here
as for the Full NDS.

• NDS0: A Full NDS with residual terms removed. This
serves as an ablation which shows the use of the residual
terms.

• Fully Connected (FC): A Fully-Connected Neural Net-
work with 4 hidden layers containing 128 nodes with
ReLU activations and batch normalization.

• Fully Connected Neural ODE (FC NODE): A larger
version of the Neural ODE as given in [8], we use 3
hidden layers with 128 nodes, batch norm, and Softplus
activations for ẋ. This can be interpreted as a version
of our NDS with no prior knowledge, i.e. g(x) = 0.

• LSTM: A stacked LSTM with 8 layers as in [17]. The
data is fed in sequentially and we regress the outputs
of the LSTM against the true values of the trajectory.

• Gray Box Optimization (GBO): We use MATLAB’s
gray-box system identification toolbox [23] along with

the prior knowledge ODEs to fit the parameters �̂ as
an alternative to using neural networks. This algorithm
uses trust-region reflective nonlinear least squares with
finite differencing [12] to find the parameter values
which minimize the error of the model rollouts over
the observed data.

• Sparse Identification of Nonlinear Systems (SR): We
use the method from [6] to identify the dynamical
systems of interest. This method uses sparse symbolic
regression to learn a linear mapping from basis func-
tions of the state xt and control ut to the derivatives ẋt

computed by finite differences. Our synthetic systems
are in the span of the polynomial basis that we used.

• APHYNITY: We use the method from [18], which fits
a min-error parameter but then has an additional neural
network component to model unknown dynamics.

B. Synthetic Experiments
We first present results on a pair of synthetic physical

systems where the data is generated in a noiseless and
regularly spaced setting.

a) Sample Complexity and Overall Accuracy: In order
to test sample complexity in learning or fitting, we generated
data for a full training dataset of 100,000 trajectories. We
then fit our models on different fractions of the training
dataset: 1, 0.25, 0.05, 0.01. We repeated this process with 5
different random seeds and computed the L2 error of the
model over a the various dataset splits seen by the model in
Table I. The error regions are the standard error of the errors
over the various seeds.

We also see that with small amounts of data, the NDS
models greatly outperform the Neural ODE, but with the
full dataset, their performances get closer. This makes sense
as the Neural ODE is likely able to infer the structure of the
system with large amounts of data. Also, the Fully Connected
Neural ODE outperforms the other baselines, which we posit
is due to the fact that it implicitly represents that this system
as a continuous time dynamical process and should change in
a continuous fashion. From a sample-complexity perspective
it makese sense that the better initialization of NDS should
matter most when data is limited. A table of the full results
of all experiments can be seen in Table I.

We notice that the NDS0 slightly outperforms the NDS
with higher variance on these systems. Since it has a perfect
model of the system, the residual components aren’t neces-
sary for the model to perform well, however, there is no way
the network can ‘correct’ for a bad estimate.

Curiously, we see on the ballistic system that the partial
NDS slightly outperforms the full NDS in the small data set-
ting, but they converge to similar performance with slightly
more data. A potential explanation for this is that errors
propagate through the dynamical model when the parameters
are wrong, while the partial systems naturally dampen errors
since, for example, ż only depends on the other components
through a neural network. Concretely this might look like
a full NDS predicting the wrong Rayleigh number � which
might give errors to y which would then propagate to x and
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Fig. 2. L2 distance between � and �̂. As the NDS are trained under the
usual L2 supervision, the parameters �̂ of the system approach the correct
values.

y. Conversely, this wouldn’t happen as easily in a partial
NDS because there are neural networks intermediating the
components of the system. We also see APHYNITY (which
fits a min-error parameter and is otherwise very similar to
NDS) performs worse than NDS in this setting.

b) Parameter Learning without Explicit Supervision:
For experiments in Figure 2, we stored the parameter es-
timates �̂ for the NDS and gray box models and compared
them to the true values to see how they perform in identifica-
tion rather than prediction. None of these models were ever
supervised with the true parameters. We see in Figure 2 that
the NDS is better able to estimate the parameter values than
the gray-box method for both systems tested. We believe this
is because our method is able to leverage many trajectories
to infer the parameters whereas the gray-box method only
uses the single trajectory.
C. Fusion Experiments

We explored the concept of approximate system dynamics
in a simplified fusion system. We predict the state of the
tokamak as summarized by its stored energy and rotational
frequency given the time series of control input in the form
of injected power and torque. As mentioned in Section IV,
we have a simplified physical model given by Equation 6
that approximately gives the dynamics of these quantities
and how they relate to one another through time. Though
there is a lot of remaining work to apply this model in a
real experiment, approaches merging theoretical models with
data to make useful predictions can be embedded into useful
controller designs and improve the state of fusion.

Our full dataset consisted of 17,686 trajectories, which
we randomly partitioned into 1000 as a test set and 16,686
as a training set.1 The data are measured from the D-
IIID tokamak via magnetic reconstruction [15] and charge-
exchange recombination spectroscopy [19]. Similar to our
synthetic experiments, we cut each trajectory into overlap-
ping 48 timestep sections and train on 32 timesteps to predict
16 timesteps. We compare with the same models as in the
previous section, but using our Fusion Neural Dynamical
System as described in Equation 2 with g given by Equation
6. As we discussed above, the dynamics in this equation are
approximate. To illustrate this, we have included the accuracy

1Data is loaded and partially processed within the OMFIT framework
[27]. We used the “SIGNAL PROCESSING” module which has recently
been developed for this task and is publicly available on the “pro-
file prediction data processing” branch of the OMFIT source code. Details
of the preprocessing are in the Appendix.

of the naive dynamics with no learning on our data with fixed
confinement times ⌧e = ⌧m = 0.1s as the Nominal Fusion
Model in Table II. We use a larger fully connected network
with 6 layers with 512 hidden nodes to attempt to capture
the added complexity of the problem.

a) Sample Complexity and Overall Accuracy: When
comparing our NDS models, the machine learning baselines,
the system ID baselines, and a nominal model from [3], we
see that the Fusion NDS model performs best by a large
margin. Although the fully connected neural ODE performs
competitively, it fails to reach the same performance. We
speculate that the dynamical model helps with generalization
whereas the fully connected network may overfit the training
data and fail to reach good performance on the test set. Here
the NDS0 is unable to perform well compared to the NDS,
as the approximate dynamics mean that the model error is
somewhat catastrophic for predictions. We see however that
the NDS0 outperforms the Nominal Physics Model as it
is able to estimate the parameters for each example rather
than fixing values of the parameters for the whole dataset.
Similarly, APHYNITY outperforms the nominal model but
underperforms the NDS0, suggesting that the online parame-
ter estimation component is necessary for good performance.

We see these results as highly encouraging and will
continue exploring uses of NDS in fusion applications.

D. Control Experiment

We also explored the use of these models for control
purposes using model-predictive control [7]. For this pur-
pose, we modified the Cartpole problem from [5] so that
there are a variety of parameter values for the weight of the
cart and pole as well as pole length. Typically, a ‘solved’
cartpole environment would imply a consistent performance
of 200 from a control algorithm. However, there are three
factors that make this problem more difficult. First, in order
to allow each algorithm to identify the system in order to
make appropriate control decisions, we begin each rollout
with 8 random actions. The control never fails at this point
but would certainly fail soon after if continued. Second, the
randomly sampled parameters per rollout make the actual
control problem more difficult as the environment responds
less consistently to control. For example, MPC (for an
explanation of MPC, see Appendix B) using the typical
Cartpole environment as a model results in rewards of ap-
proximately 37. Third, all training data for these algorithms
uses random actions with no exploration, which has been
seen to degrade the performance of most model-based RL
or control algorithms [29].

We then trained dynamics models on this ‘EvilCart-
pole’ enviroment for each of our comparison algorithms
on datasets of trajectories on the environment with random
actions. At that point, we rolled out trajectories on our
EvilCartpole environment using MPC with control sequences
and random shooting with 1,000 samples and a horizon of
10 timesteps. The uncertainties are standard errors over 5
separately trained models.
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System Lorenz Ballistic
Samples 100,000 25,000 5,000 1,000 100,000 25,000 5,000 1,000

FC 1.06± 0.002 1.39± 0.003 1.694± 0.002 4.692± 0.6 7.8± 1.4 8.3± 1.6 9.2± 2.5 13.4± 3.4
FC NODE 1.205± 0.01 1.233± 0.01 1.27± 0.01 1.917± 0.12 2.53± 0.2 2.6± 0.4 4.8± 0.7 9.7± 1.3
Full NDS 1.004± 0.06 1.087± 0.06 1.14± 0.05 1.42± .05 1.2± 0.1 1.4± 0.2 1.5± 0.2 4.23± 0.3

Partial NDS 1.036± 0.03 1.064± 0.1 1.12± 0.06 1.39± 0.04 1.05± 0.1 1± 0.03 1.48± 0.02 1.9± 0.15
NDS0 1± 0.03 1.075± 0.1 1.13± 0.11 1.36± 0.17 1.2± 0.06 1.35± 0.14 1.45± 0.18 4.3± 0.6

APHYNITY 1.08± 0.03 1.17± 0.05 1.23± 0.04 1.61± 0.07 1.7± 0.1 1.75± 0.13 1.94± 0.18 6.2± 0.4
LSTM 4.98± 0.01 5.98± 0.3 5.99± 0.3 6.13± 0.4 8.5± 1.6 9.2± 1.5 10.1± 2.1 14.9± 1.9

SR 2.3± 0.6 n/a n/a n/a 3.5± 0.3 n/a n/a n/a
GBO 2.8± 0.4 n/a n/a n/a 2.94± 0.3 n/a n/a n/a

TABLE I
SAMPLE COMPLEXITY RESULTS AS DISCUSSED IN SECTION V-B. HERE, THE VALUES ARE NORMALIZED BY THE SMALLEST REPORTED VALUE FOR

COMPARISON PURPOSES.

Model L2 Error on the Fusion Test Set
FC 4.02± 0.27

FC NODE 1.71± 0.11
Nominal Fusion Model 2.89

NDS with Approximate Dynamics 1± 0.06
NDS0 1.85± 0.09

APHYNITY 1.21± 0.15
LSTM 5.23± 0.43

SR 5.26± 0.35
GBO 2.98

TABLE II
THE PERFORMANCE OF OUR COMPARISON MODELS ON THE NUCLEAR

FUSION PROBLEM, AS DISCUSSED IN SECTION V-C. WE AGAIN

NORMALIZE BY THE SMALLEST VALUE FOR EASE OF COMPARISON.

MSE of Model MPC Returns
# Train 5K 1K 5K 1K

FC 0.031± 0.009 0.058± 0.018 52± 3 41± 4
FC NODE 0.028± 0.011 0.049± 0.013 55± 4 46± 3

LSTM 0.081± 0.023 0.092± 0.025 23± 6 25± 8
Full NDS 0.020± 0.006 0.029± 0.007 72± 4 60± 3

Partial NDS 0.022± 0.009 0.033± 0.011 69± 8 55± 6
NDS0 0.023± 0.013 0.028± 0.014 71± 11 57± 8

SR 0.037± 0.023 0.041± 0.015 65± 4 56± 4
GBO 0.046± 0.019 n/a 49± 5 n/a

TABLE III
MODELING AND CONTROL ON THE EVILCARTPOLE SYSTEM.

As shown in Table III, the NDS algorithms outperform all
baselines on the cartpole task for both the modeling and
control objectives. We see that all algorithms degrade in
performance as the amount of data is limited. We notice
however that with larger amounts of data (we performed
other experiments with 25,000 and 100,000 samples) the
Fully Connected and Neural ODE models perform as well
as the NDS models. We hypothesize that this is due to
the fact that the cartpole dynamics are ultimately not that
complicated and with sufficient data unstructured machine
learning algorithms can learn the appropriate dynamics to
reach a modestly performing controller as well as NDS.

VI. CONCLUSION

In conclusion, we give a framework that merges theoretical
dynamical system models with deep learning by backprop-
agating through a numerical ODE solver. This framework
succeeds even when there is a partial or approximate model
of the system. We show there is an empirical reduction in
sample complexity and increase in accuracy on two synthetic
systems and on a real nuclear fusion dataset. In the future, we
wish to expand upon our work to make more sophisticated
models in the nuclear fusion setting as we move toward

practical use. We also hope to explore applications of this
framework in other area which have ODE-based models of
systems. ACKNOWLEDGEMENTS
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